Role of the Mitochondrial Genome during Early Development in Mice
نویسندگان
چکیده
The role of the mitochondrial genome in early development and differentiation was studied in mouse embryos cultured in vitro from the two to four cell stage to the blastocyst (about 100 cells). During this period the mitochondria undergo morphological differentiation: progressive enlargement followed by an increase in matrix density, in number of cristae, and in number of mitochondrial ribosomes. Mitochondrial ribosomal and transfer RNA synthesis occurs from the 8 to 16 cell stage on and contributes to the establishment of a mitochondrial protein-synthesizing system. Inhibition of mitochondrial RNA- and protein-synthesis by 0.1 microg/ml of ethidium bromide or 31.2 microg/ml of chloramphenicol permits essentially normal embryo development and cellular differentiation. Mitochondrial morphogenesis is also nearly normal except for the appearance of dilated and vesicular cristae in blastocyst mitochondria. Such blastocysts are capable of normal postimplantation development when transplanted into the uteri of foster mothers. Higher concentrations of these inhibitors have general toxic effects and arrest embryo development. It is concluded that mitochondrial differentiation in the early mouse embryo occurs through the progressive transformation of the preexisting mitochondria and is largely controlled by the nucleocytoplasmic system. Mitochondrial protein synthesis is required for the normal structural organization of the cristae in blastocyst mitochondria. Embryo development and cellular differentiation up to the blastocyst stage are not dependent on mitochondrial genetic activity.
منابع مشابه
ROLE OF THE MITOCHONDRIAL GENOME DURING EARLY DEVELOPMENT IN MICE Effects of Ethidium Bromide and Chloramphenicol
The role of the mitochondrial genome in early development and differentiation was studied in mouse embryos cultured in vitro from the two to four cell stage to the blastocyst (about 100 cells). During this period the mitochondria undergo morphological differentiation : progressive enlargement followed by an increase in matrix density, in number of cristae, and in number of mitochondrial ribosom...
متن کاملReconstruction of early Neolithic/Bronze Age population diversity in the Shamanka II cemetery at Lake Baikal using mtDNA polymorphism
Mitochondrial deoxyribonucleic acid (mtDNA) polymorphisms were examinedin bone samples of individuals buried inan early Neolithic (c. 5800–4900 BCE) hunter-gatherer cemetery, Shamanka II, located atthe southwestern tip of Lake Baikal, Siberia. The mainobjective was to compare the mtDNA polymorphisms observed at Shamanka II to those previously reportedfrom the Lokomotiv (early Neolithic) and Ust...
متن کاملExercise during adolescence attenuated depressive-like behaviors and hippocampal mitochondrial dysfunction following early life stress in adult male rats
Purpose: In this study, we assumed that treating animals with an antidepressant agents or voluntary running wheel exercise (RW) during adolescence may have protective effects against early life stress (ELS) which can impact on behavior and mitochondrial function. Evidence indicates that ELS has deleterious effects on brain and behavior and increases the risk of mental disorders such as depressi...
متن کاملExercise during adolescence attenuated depressive-like behaviors and hippocampal mitochondrial dysfunction following early life stress in adult male rats
Purpose: In this study, we assumed that treating animals with an antidepressant agents or voluntary running wheel exercise (RW) during adolescence may have protective effects against early life stress (ELS) which can impact on behavior and mitochondrial function. Evidence indicates that ELS has deleterious effects on brain and behavior and increases the risk of mental disorders such as depressi...
متن کاملO-9: The Central Role of Mitochondrial Function in Quality of Human Oocyte
Background: Mitochondria are the most aboudent and small essential organelles found in eukaryotic cells. These are semiautonomous organelles for the production of cellular ATP that through its various biochemical pathways. The primary pathway for ATP production is OXPHOS via the electron transfer chain (ETC) which is encoded by nuclear DNA and mtdna genomes. Mitochondria consist of double stran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 58 شماره
صفحات -
تاریخ انتشار 1973